Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candida albicans.

نویسندگان

  • Andrew R Dodgson
  • Kirsty J Dodgson
  • Claude Pujol
  • Michael A Pfaller
  • David R Soll
چکیده

Population studies have indicated that natural resistance to flucytosine (5FC) in Candida albicans is limited to one of the five major clades, clade I. In addition, while 73% of clade I isolates are less susceptible to 5FC (MIC >/= 0.5 microg/ml), only 2% of non-clade I isolates are less susceptible. In order to determine the genetic basis for this clade-specific resistance, we sequenced two genes involved in the metabolism of 5FC that had previously been linked to resistance (cytosine deaminase and uracil phosphoribosyltransferase), in 48 isolates representative of all clades. Our results demonstrate that a single nucleotide change from cytosine to thymine at position 301 in the uracil phosphoribosyltransferase gene (FUR1) of C. albicans is responsible for 5FC resistance. The mutant allele was found only in group I isolates. The 5FC MICs for strains without copies of the mutant allele were almost exclusively /=0.5 microg/ml, and those for strains with two copies of the mutant allele were >/=16 microg/ml. Thus, the two alleles were codominant. The presence of this allele is responsible for clade I-specific resistance to 5FC within the C. albicans population and thus by inference is likely to be the major underlying 5FC resistance mechanism in C. albicans. This represents the first description of the genetic mutation responsible for 5FC resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Ser29Leu substitution in the cytosine deaminase Fca1p is responsible for clade-specific flucytosine resistance in Candida dubliniensis.

The population structure of the opportunistic yeast pathogen Candida dubliniensis is composed of three main multilocus sequence typing clades (clades C1 to C3), and clade C3 predominantly consists of isolates from the Middle East that exhibit high-level resistance (MIC(50) > or = 128 microg/ml) to the fungicidal agent flucytosine (5FC). The close relative of C. dubliniensis, C. albicans, also e...

متن کامل

Population structure and properties of Candida albicans, as determined by multilocus sequence typing.

We submitted a panel of 416 isolates of Candida albicans from separate sources to multilocus sequence typing (MLST). The data generated determined a population structure in which four major clades of closely related isolates were delineated, together with eight minor clades comprising five or more isolates. By Fisher's exact test, a statistically significant association was found between partic...

متن کامل

Acquired Flucytosine Resistance during Combination Therapy with Caspofungin and Flucytosine for Candida glabrata Cystitis.

Treatment of Candida glabrata cystitis remains a therapeutic challenge, and an antifungal combination using flucytosine is one option. We describe two patients with refractory C. glabrata cystitis who failed flucytosine combined with caspofungin with early-acquired high-level resistance to flucytosine due to nonsense mutations in the FUR1 gene. Rapidly acquired flucytosine resistance with micro...

متن کامل

Down-Regulation of the ALS3 Gene as a Consequent Effect of RNA-Mediated Silencing of the EFG1 Gene in Candida albicans

Background: The most important virulence factor which plays a central role in Candida albicans pathogenesis is the ability of this yeast to alternate between unicellular yeast and filamentous hyphal forms. Efg1 protein is thought to be the main positive regulating transcription factor, which is responsible for regulating hyphal-specific gene expression under most conditions. ALS3 is one of the ...

متن کامل

Study and detection of ERG11 gene mutation in resistant - drug Candida albicans and relation with Iranian women infertility

Aim and Background: Candida  Albicans is the most important cause of  vulvovaginal candidiasis and resistance to azoles can occur via various mechanisms including, change in the ERG11 gene. This study aim was to identification  of  ERG11 gene mutations in drug  resistant Candida albicans isolated from patients with Candida vaginitis and its association with infertility in Iranian women.   Mat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 48 6  شماره 

صفحات  -

تاریخ انتشار 2004